RESILIENT INNOVATION

710 rue Favre de Saint Castor 34080 MONTPELLIER

+44 330 808 4873

© 2019 by Resilient Innovation.

Rehabilitation in Parkinson's disease

Our medical device makes a proven rehabilitation method accessible to everyone thanks to new technologies.

The core of the WALK device : rhythmic auditory stimulation

This neurological rehabilitation method consists in establishing a treatment of the "artificial" rhythm by using external rhythmic sound stimulation. The close relationship between the auditory system and the motor system can explain the beneficial effects observed during an RAS.

 

Neurological mechanisms 

Cerebello-thalamo-cortical pathway

 

Auditory information could also influence two major pathways for movement processing and timing management: the BGTC pathway (basal ganglia - thalamus - motor cortex) and the CTC pathway (cerebellum - thalamus - motor cortex). Hyperactivations of CTC pathway are described both in the initiation of movement in patients with Parkinson's disease and in finger tapping exercises. This path therefore appears as a major path in sensorimotor dialogues and in the development of synchronized operation on an external signal.

 

Many studies have demonstrated the effectiveness of this technique in Parkinson's disease and its benefits in improving conventional spatio-temporal walking parameters such as speed or stride length

In Bryant's study, which included about twenty Parkinson's patients, improvements in speed and stride length were observed in acute administration. These effects are accentuated by daily training and persist after one week of practice during the unstimulated test. Among the people surveyed, 75% express an interest in using a device that delivers the RAS on a daily basis to support them in their journey.

 

Nieuwboer's study also studied the impact of administering sound cues at home over 6 weeks of training on 153 patients with Parkinson's disease[8]. As previously demonstrated, there is an increase in the speed and stride length of patients. Motor skills are slightly increased with an improvement in posture, walking score (4.2%) and balance tests. The risk of falls was also measured, improvement of patient mobility through auditory stimulation could increase the patient's risk of falling. The results obtained do not show an increase in falls in treated patients. Instead, improving patient balance and confidence could reduce the risk of falling.  

Gait speed

Stride 

length

Step

regularity

Cadence

Assessment of the WALK device on walking, freezing and quality of life of Parkinson's disease patients

44 patients with Parkinson's disease answered two self-administered questionnaires, at D0 (before use) and D7 (after use of WALK). The items used are based on standardized questionnaires:

  • UDPRS[9], in particular item 2.12 for walking and balance and item 2.13 for freezing

  • PDQ-39[10], in particular the following items:

    • Item 1 - Leisure

    • Item 2 - Tasks of daily life

    • Item 6 - Autonomy

    • Item 10 - Outdoor activities  

    • Item 26 - Self-confidence

The ergonomics of the device, the occurrence of adverse effects and the use time of the device were also measured through these questionnaires.

An average improvement of 19% in walking score and balance was observed.

57% of patients reported that the device helped them to reduce their motor symptoms.

After one week of use of the WALK device, a significant decrease of 17% in the walk blocking score is observed. Among the patients surveyed, 43% indicated that the device helped them reduce the occurrence and the severity of their freezing episodes.

By analysing 5 aspects of patients' quality of life (leisure activities, daily tasks, independence, outdoor activities, self-confidence) before and after use of the device, we can see a significant improvement of 18% in the score.

During this first week, 69% of patients used the WALK for more than 1 hour per day, and 42% used it for more than 3 hours per day.

Conclusion

This first study highlights the positive impact of the WALK medical device over a one-week period, particularly on patients' motor skills and quality of life. This device is suitable for self-administration use. Future interventional clinical studies will determine the immediate impact of the device on patients' walking parameters (speed, stride length) and after home training over a one-month period. A follow-up will be carried out in order to estimate the long-term effects of the system (> 6 months).

Do you want more informations ?

pageaccueil.jpg

LE WALK

A rehabilitation solution for locomotor disorders related to Parkinson's disease

Témoignage_Christiane.png

USERS'

TESTIMONIES

Our experts regularly follow the progression of our users

in order to ensure the long-term benefits of the WALK

Priseenchargeparkinson_modifié.jpg

OUR EXPERT

CENTRES

The WALK device has been developed with many specialists in physical medicine and rehabilitation and neurology

References 

  • Coull, Jt, et Ac Nobre. « Dissociating Explicit Timing from Temporal Expectation with FMRI ». Current Opinion in Neurobiology 18, no 2 (avril 2008): 137 44.

  • Wu, Tao, Liang Wang, Mark Hallett, Yi Chen, Kuncheng Li, et Piu Chan. « Effective Connectivity of Brain Networks during Self-Initiated Movement in Parkinson’s Disease ». NeuroImage 55, no 1 (1 mars 2011): 204 15.

  • Lewis, M. M., C. G. Slagle, A. B. Smith, Y. Truong, P. Bai, M. J. McKeown, R. B. Mailman, A. Belger, et X. Huang. « Task Specific Influences of Parkinson’s Disease on the Striato-Thalamo-Cortical and Cerebello-Thalamo-Cortical Motor Circuitries ». Neuroscience 147, no 1 (15 juin 2007): 224 35.

  • McIntosh, G. C., Brown, S. H., Rice, R. R., & Thaut, M. H. (1997). Rhythmic auditory-motor facilitation of gait patterns in patients with Parkinson’s disease. Journal of Neurology, Neurosurgery, and Psychiatry, 62(1), 22–6.

  • Ghai, Shashank, Ishan Ghai, Gerd Schmitz, and Alfred O. Effenberg. “Effect of Rhythmic Auditory Cueing on Parkinsonian Gait: A Systematic Review and Meta-Analysis.” Scientific Reports 8, no. 1 (January 11, 2018): 506.

  • Howe, T. E., B. Lövgreen, F. W. J. Cody, V. J. Ashton, et J. A. Oldham. « Auditory Cues Can Modify the Gait of Persons with Early-Stage Parkinson’s Disease: A Method for Enhancing Parkinsonian Walking Performance? » Clinical Rehabilitation 17, no 4 (juillet 2003): 363‑67.

  • Bryant, M. S., D. H. Rintala, E. C. Lai, et E. J. Protas. « An Evaluation of Self-Administration of Auditory Cueing to Improve Gait in People with Parkinson’s Disease ». Clinical Rehabilitation 23, no 12 (Decembre 2009): 1078 85.

  • Nieuwboer, A, G Kwakkel, L Rochester, D Jones, E van Wegen, A M Willems, F Chavret, V Hetherington, K Baker, et I Lim. « Cueing training in the home improves gait‐related mobility in Parkinson’s disease: the RESCUE trial ». Journal of Neurology, Neurosurgery, and Psychiatry 78, no 2 (février 2007): 134‑40.